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CERTAIN PLANE CONTACT PROBLEM OF ELASTICITY THEORY 
FOR STRONGLY ANISOTROPIC MEDIA * 

1~. A. BOGAN 

The asymptotic behavior is studied of the solutions of the second boundary value 
(displacements are given on the boundary) and two contact problems of elasticity 
theory in a rectangular domain for a curvilinear orthotropic medium with one quite 
high elasticity coefficient. The sides of the rectangle are parallel to the ortho- 
tropy directions. It is shown that for a curvature different everywhere from zero 
for families of very rigid fibers, we always obtain a medium with inextensible fib- 
ers in the limit (the Mdel of the medium with inextensible fibers is introduced in 
a number of papers, /l/, say). The presence of a large parameter in thegeneralized 
Hooke's law results in a singular perturbation of the boundary value problems. Such 
singularly perturbed problems occur in studying structures from composite materials 
reinforced by high-modulus fibers /1,2/. It was studied the question of regularity 
of the degeneration of pre-limiting boundary value problems in limit problems /3/. 
The uniform asymptotic of the solution in a closed domain contains functions of the 
angular boundary layer. 

1. We take the generalized Hooke's law for the orthotropic material in the form 

where l,,, l,,, l,, are deformations in the orthogonal coordinates (zl,zJ which we henceforth 
assume isothermal, tosimplify the formulas._ The positiveness of the strain potential energy 
results in the constraints: ~1, > 0, i = 1, 2, 6, and cllc~2 - CID’ > 0. 

Let us introduce the dimensionless stresses and stiffnesses by setting bi, = Ci~C~-‘~ 

aij = oi,Qs- and let us henceforth conserve the previous notation for the dimensionless stres- 

ses. Let us set b,, = s-* (e small). LetQ be a rectangular domain on a plane, Q = ((;c~,z& 

0 < xl < a, 0 <x2 < b). Let the curvature of a family of fibers 2, I const, in Q be strictly 

different from zero. For the deformations lll,l,.,, l,, we have the relationship 

where u, L' are displacements along the fiber families, respectively 

xzsconst and 51 E const, k_ amm a (In 8) 
a+ * m-F 

where H is the Lam& coefficient. 
We set 

0, = b,&, - m, - bkm - m2, a, = k = bm, as = k,, i- 
ckm, a, = bk, - m, - ckm 

a5 = blPml, - k, - Y, c = 1 + b,,, b = b,, 

The system of equilibrium equations has the form 

(1.2) 
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For x = 0, a are the displacements, U,U satisfy the boundary conditions 

(0, 52) = f, (x*)9 v (0, 23 = fr (x1)9 u (a, x2) = fl (x2) (1.3) 

u (a, 52) = f4 (52) 

and for x =O, b let one of the following boundary condition combinations be satisfied /4/: 

u (rrt 0) = g, (x,), v (r,, 0) = g, (rA a (r,, b) = g, (51) (1.4) 

v (G b) = g, (21) 

'c rrl,(rr, 0) =rnn (slrb) = 0, v (~1, 0) =L?, (XI), v (~1, b) = g, (x1) (1.5) 

r,, (Xl, 0) = =XSx* (x,, 6) = 0, u (21, 0) = g, (x,), u (51, b) = g, (x1) (1.6) 

We require that the functions fk,gt have a sufficiently large quantity of continuous der- 
ivatives, and the function m (zrx,J be everywhere different from zero in q. 

We designate the problem of solving the system of equations (1.2) under the boundary con- 
ditions (1.3) and (1.4) the problem A =I and the problem of solving the system (1.2) under 
the boundary conditions (1.3) and (1.5), the problem Be. The asymptotic behavior of the 
solutions of problems (l-2), (1.31, (1.6) is constructed analogously to the asymptotic be- 
havior of the problem B. and will not be considered here. We consider the question of con- 
structing asymptotics of the solutions of problems A, and B, for small e. The smallness of 
E means that the domain Q is reinforced by a family of very rigid fibers x2= cons& 

2. We construct first the asymptotic of the solution of problem At for small E. We 
introduce the function q = eel,, and substitute q into the system of equations (1.2). We seek 
the approximate solution of the system of equations obtained in the form 

N 

u (x1,x2) = Z e"u,hz~), v(zl,x2) = (2.1) 
-0 

Upon substituting (2.1) into (1.2), we obtain a recurrently coupled system of equations 

(2.2) 

=$ + au, - Hxrp, = 0 

Let us recall that the curvature of the families of fibers x,~const is proportional to 

HZ, and is different from zero by assumption. Eliminating qn from (2.2), we obtain an equa- 
tion for u, 

b (2.3) 

where derivatives of order less than four are in 
the type /5/ with one binary family 

p?l (an)- Equation (2.3) has a component of 
, of real characteristics xrz const in contrast to the 

system (1.2) which is of elliptic type. The change in the type of system results in the ap- 
pearance of boundary layer functions along the characteristic part of the boundary in the 
asymptotic of the solution of the problem A,. 

We construct a system of equations to determine the boundary layer functions near x1 = 0. 
We introduce the stretching coordinate n =x2/e into the system of equations (1.2) and we 
expand the functions ak(xl, ne), k(r,, ne), m(s,,qe) in Taylor series in powers of e near n = 0; 
we set p (x,) = m (xl, 0). 
in the form 

We seek the approximate solution of the system of equations obtained 
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We consequently 
ary layer functions 

where fo,+ = foea = 0. . 

d 
K-q ! 

% 0 
+ p(51)Vn.a 4 A=f, 1. 

j 

d% 

dq’ ’ 
(2.4) 

att2, o 
) -p&) t* + P(rl)l'n,oj = in,3 

w 

The differential operators fn,l, fn,% are reproduced from the initial 
system or equatzons to construct the boundary layer functions. 
be noticeably different from sexo only near n = 0, 

The functions u,,.. c,‘,, should 

vanish as ?I - +CO. 
hence it is natural to require that they 

Consequently, they turn out to be connected by certain relationships. 
We first consider the case when I? = 0. We multiply the second equation in the system 

(2.4) by p-l(+), differentiate the result with respect to x1 
tion. We obtain a relationship from which it follows that 

and combine with the first equa- 

obtain a recursively xelated system of equations to determine the bound- 

It can be shown by induction that for n> t 

where g,o is a certain Uniquely defined function. Substituting (2.5) into the second equa- 
tion of the system (2.41, we obtain a second order elliptic equation to determine Vn,n f%. '1) 

a2u 
3 + P(Xl) d?' $$- Ip-'(sl) v,,ol - p-ab-'&L,O= fn,s (k.l,O? . . . t 00.0) (2.6) 

where f,,s=Ofor n=O. 
The functions u,,,, (s,, Q), ~,,,l(.+ 11~) of the boundary layer near I~ = b canbe constructed 

in a similar manner by introducing the stretching coordinate nl = (b -X&/E. Here the boundary 
layer functions satisfy relationships analogous to (2.5). 

Therefore, we obtain the asymptotic expansion of the problem in the form 

(2.7) 

where %,l (.sI,?h) is the boundary layer function near x2 =I b, and P-l(xr,b) = mm1 {xl,b). The 
asymptotic expansions (2.71 permit determination of the boundary conditions for the functions 
u,, for 5% = 0,b and u~,~, v,,., for n = 0 and Q = 0. 

For example, let Us note that it is impossible to set 

since it is impossible to give two independent boundary conditions on the characteristic of 
(2.3); this would result in giving two boundary conditions for the function *,,o(f~,n) at n=O. 
But (2.6) is elliptic, and the boundary value problem to determine the boundary layer func- 
tions would be incorrect. 

To determine the correct boundary conditions, we use the method of elimination. Eliminat- 
ing uo and ~0,~ successively from (2.71, we obtain that for lL = 0 the functions 1~~ and L.S,'O 
satisfy the boundary conditions 

~~o(rt&-b-&- [ 
p-~(z,)~(r1,0)] =btltrl) + t-&P-%)&(Z1)1 (2.8) 
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we obtain analogous boundary conditions for u. (I,, x2), ve,, fx,, Q) for .)‘$ = It. Therefore, 

none of the boundary conditions of the prelimiting problem A E is satisfied in the limit bound- 

ary value problem A,. 
Let us note that the representation of the asymptotic of the solution of problem A.in 

the form (2.7) does not permit satisfaction of the boundary conditions (1.4) for 51 = 0, P 
since the boundary layer functions can satisfy just one boundary condition for 2, = 0, e re- 
spectively, because of the ellipticity of (2.6). Therefore, to construct the complete asymp- 

totic of the solution of problem Ae , it is necessary to append boundary layer functrons near 
the angular points of the domain to the functions (2.7). 

We construct anagular boundary layer functions near the point 
analogously near the remaining points). We expand the coefficients 
power series in x, and x2 near the point (O,O) and we introduce the 

x,/a, n = x,fe. Substituting them into the system (1.2), we obtain 

(0,O) (they are determined 
of the system (1.2) in 
stretching coordinates r = 

+ (2.9) 

al (7, q) u + me-' -& - a8 (t, q) ~7’ +zs(t, q)v=O 

f/F-* 

Expanding the coefficients of the derivatives in powers of E, we find the approximate 
solution of the system (2.9) in the form 

N--l 
U(2)'(T,?$ =a 2 eVTI,o(~~ rl)? v'*'(r,q) =*&%,o(T,l) 

We then obtain the equations 

% 
*+m(O,O)+=O 

b @qo 0 %,o 
----t-r w 

- m (0,O) a2o --ms(O,O)qo,o= 0 

12.10) 

for the functions pa.0 and Bo,o, and analogous equations to 
and qn,o for n > 1. 

We require the function u,(x~,z~) to satisfy the boundary 
tion L',,,~ (x,, n) the boundary conditions 

determine the functions Pn.0 

conditions (1,3), and the func- 

(2.11) 

Then to determine the functions po,o and qo,a we obtain the boundary conditions 

PO," (0, 11) = -vo.o (0, I])* Qo.0 (r, 0) = 0, PO.0 (0, tl) = 0 (2.12) 

According to conditions (2.121, the bounded solution as '6-6 j-co, for the system of equa- 
tions (2.10) is uniquely determined. 

We obtain boundary conditions analogous to (2.12) for the functions qn,ot and PZ,,I1 for 
n> 1. According to boundary conditions (2.8) and (Z.ll.), the function Po,o(x,,n) is defined 

uniquely, where it damps out exponentially as II-+ + DD. 
Indeed, it can be represented in the form 

"o,o(&rl) $o.-%n (21) 

where X, and qn(xl) are the eigennumbers and eigenfunctions of the following spectral problem: 

P & IP-' (Xl) J:, WI + f&Z - PW $ (4 = 0 (2.13) 

0% fp-' kf$& (?)1,*. = 0 

which is self-adjoint, and as is known, has two series of eigenvalues: for &,I> 0 and L,<O. 
The requirement of damping as n-.+m permits keeping only the positive &, in the representa- 
tion mentioned and satisfying the given boundary condition for n= 0. 



120 

3. We briefly consider the problem Be, whose asymptotic of the solution 1s contructed 
analogously to the asymptotic of the problem _& ; the distinction is just that for 11 = 0 the 
boundary layer function should be sought in the form 

However, in contrast to the problem A C, the function ~~(xl,xp) in the zero-th approx- 
imation satisfies the boundary condition (1.5). Therefore, the problem & is regularly de- 
generate (one of the boundary conditions of the prelimit problem is conserved in the limit). 
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